物理信息的神经网络(PINN)已证明是解决部分微分方程(PDE)的前进和反问题的有效工具。 PINN将PDE嵌入神经网络的丢失中,并在一组散射的残留点上评估该PDE损失。这些点的分布对于PINN的性能非常重要。但是,在现有的针对PINN的研究中,仅使用了一些简单的残留点抽样方法。在这里,我们介绍了两类采样的全面研究:非自适应均匀抽样和适应性非均匀抽样。我们考虑了六个均匀的采样,包括(1)稳定的均匀网格,(2)均匀随机采样,(3)拉丁语超立方体采样,(4)Halton序列,(5)Hammersley序列和(6)Sobol序列。我们还考虑了用于均匀抽样的重采样策略。为了提高采样效率和PINN的准确性,我们提出了两种新的基于残余的自适应抽样方法:基于残留的自适应分布(RAD)和基于残留的自适应改进,并具有分布(RAR-D),它们会动态地改善基于训练过程中PDE残差的剩余点。因此,我们总共考虑了10种不同的采样方法,包括6种非自适应均匀抽样,重采样的均匀抽样,两种提议的自适应抽样和现有的自适应抽样。我们广泛测试了这些抽样方法在许多设置中的四个正向问题和两个反问题的性能。我们在本研究中介绍的数值结果总结了6000多个PINN的模拟。我们表明,RAD和RAR-D的提议的自适应采样方法显着提高了PINN的准确性,其残留点较少。在这项研究中获得的结果也可以用作选择抽样方法的实用指南。
translated by 谷歌翻译
异常检测涉及识别不符合预期行为的数据集中的示例。虽然存在大量的异常检测算法,但是已经支付了很少的注意,以解释这些算法标志某些示例作为异常的原因。然而,这样的解释对于解释算法输出的任何人来说可能非常有用。本文开发了一种解释最先进的隔离森林异常检测算法的异常预测的方法。该方法输出解释载体,该解释矢量捕获示例的每个属性的重要性是如何将其识别为异常。合成和现实世界数据集的彻底实验评估表明,我们的方法比大多数现代最先进的解释性方法更准确,更有效。
translated by 谷歌翻译